9129767 3CUFBFPZ 1 apa 50 date desc year Nash, D. 18 https://dnash.scrippsprofiles.ucsd.edu/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22VQI8N5QH%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wang%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-29%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWang%2C%20Z.%2C%20Ding%2C%20Q.%2C%20Wu%2C%20R.%2C%20Ballinger%2C%20T.%20J.%2C%20Guan%2C%20B.%2C%20Bozkurt%2C%20D.%2C%20%3Cstrong%3ENash%2C%20D.%3C%5C%2Fstrong%3E%2C%20Baxter%2C%20I.%2C%20Top%26%23xE1%3Bl%2C%20D.%2C%20Li%2C%20Z.%2C%20Huang%2C%20G.%2C%20Chen%2C%20W.%2C%20Chen%2C%20S.%2C%20Cao%2C%20X.%2C%20%26amp%3B%20Chen%2C%20Z.%20%282024%29.%20Role%20of%20atmospheric%20rivers%20in%20shaping%20long%20term%20Arctic%20moisture%20variability.%20%3Ci%3ENature%20Communications%3C%5C%2Fi%3E%2C%20%3Ci%3E15%3C%5C%2Fi%3E%281%29%2C%205505.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-024-49857-y%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-024-49857-y%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Role%20of%20atmospheric%20rivers%20in%20shaping%20long%20term%20Arctic%20moisture%20variability%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhibiao%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qinghua%22%2C%22lastName%22%3A%22Ding%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Renguang%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20J.%22%2C%22lastName%22%3A%22Ballinger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bin%22%2C%22lastName%22%3A%22Guan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deniz%22%2C%22lastName%22%3A%22Bozkurt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deanna%22%2C%22lastName%22%3A%22Nash%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ian%22%2C%22lastName%22%3A%22Baxter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%5Cu00e1niel%22%2C%22lastName%22%3A%22Top%5Cu00e1l%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhe%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gang%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wen%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shangfeng%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xi%22%2C%22lastName%22%3A%22Cao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhang%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%20reaching%20high-latitudes%20in%20summer%20contribute%20to%20the%20majority%20of%20climatological%20poleward%20water%20vapor%20transport%20into%20the%20Arctic.%20This%20transport%20has%20exhibited%20long%20term%20changes%20over%20the%20past%20decades%2C%20which%20cannot%20be%20entirely%20explained%20by%20anthropogenic%20forcing%20according%20to%20ensemble%20model%20responses.%20Here%2C%20through%20observational%20analyses%20and%20model%20experiments%20in%20which%20winds%20are%20adjusted%20to%20match%20observations%2C%20we%20demonstrate%20that%20low-frequency%2C%20large-scale%20circulation%20changes%20in%20the%20Arctic%20play%20a%20decisive%20role%20in%20regulating%20AR%20activity%20and%20thus%20inducing%20the%20recent%20upsurge%20of%20this%20activity%20in%20the%20region.%20It%20is%20estimated%20that%20the%20trend%20in%20summertime%20AR%20activity%20may%20contribute%20to%2036%25%20of%20the%20increasing%20trend%20of%20atmospheric%20summer%20moisture%20over%20the%20entire%20Arctic%20since%201979%20and%20account%20for%20over%20half%20of%20the%20humidity%20trends%20in%20certain%20areas%20experiencing%20significant%20recent%20warming%2C%20such%20as%20western%20Greenland%2C%20northern%20Europe%2C%20and%20eastern%20Siberia.%20This%20indicates%20that%20AR%20activity%2C%20mostly%20driven%20by%20strong%20synoptic%20weather%20systems%20often%20regarded%20as%20stochastic%2C%20may%20serve%20as%20a%20vital%20mechanism%20in%20regulating%20long%20term%20moisture%20variability%20in%20the%20Arctic.%22%2C%22date%22%3A%222024-06-29%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-024-49857-y%22%2C%22ISSN%22%3A%222041-1723%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41467-024-49857-y%22%2C%22collections%22%3A%5B%223CUFBFPZ%22%5D%2C%22dateModified%22%3A%222024-11-12T21%3A31%3A26Z%22%7D%7D%2C%7B%22key%22%3A%22BXKIHUPG%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nash%20et%20al.%22%2C%22parsedDate%22%3A%222024-02-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ENash%2C%20D.%3C%5C%2Fstrong%3E%2C%20Rutz%2C%20J.%20J.%2C%20%26amp%3B%20Jacobs%2C%20A.%20%282024%29.%20Atmospheric%20Rivers%20in%20Southeast%20Alaska%3A%20Meteorological%20Conditions%20Associated%20With%20Extreme%20Precipitation.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E129%3C%5C%2Fi%3E%284%29%2C%20e2023JD039294.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD039294%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD039294%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Atmospheric%20Rivers%20in%20Southeast%20Alaska%3A%20Meteorological%20Conditions%20Associated%20With%20Extreme%20Precipitation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deanna%22%2C%22lastName%22%3A%22Nash%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%20J.%22%2C%22lastName%22%3A%22Rutz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aaron%22%2C%22lastName%22%3A%22Jacobs%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Extreme%20precipitation%20events%20associated%20with%20atmospheric%20rivers%20%28ARs%29%20trigger%20floods%2C%20landslides%2C%20and%20avalanches%20that%20threaten%20lives%20and%20livelihoods%20in%20Southeast%20Alaska.%20Six%20rural%20and%20indigenous%20communities%20%28Hoonah%2C%20Klukwan%2C%20Skagway%2C%20Yakutat%2C%20Craig%2C%20and%20Kasaan%29%20identified%20specific%20needs%20regarding%20these%20hazards%20and%20joined%20the%20Southeast%20Alaska%20Coastlines%20and%20People%20%28CoPe%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20K%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20ut%5Cu00ed%20Hub%20to%20address%20the%20shared%20challenge%20of%20understanding%20and%20predicting%20these%20events.%20This%20study%20presents%20a%20climatology%20%281980%5Cu20132019%29%20of%20synoptic%2C%20mesoscale%2C%20and%20local%20meteorological%20characteristics%20of%20ARs%20and%20heavy%20precipitation%20across%20this%20region.%20High%5Cu2010amplitude%20upper%5Cu2010level%20patterns%20across%20the%20northeastern%20Pacific%20Ocean%20favor%20ARs%20reaching%20Southeast%20Alaska%2C%20where%20moisture%20is%20orographically%20lifted%2C%20resulting%20in%20heavy%20precipitation.%20In%20the%20six%20communities%2C%20ARs%20occur%208%5Cu201315%5Cu00a0days%20per%20month%2C%20yet%20only%206%20AR%20days%20per%20year%20account%20for%20up%20to%2068%25%5Cu201391%25%20of%20precipitation%20extremes.%20Furthermore%2C%2080%25%5Cu201396%25%20of%20days%20with%20extreme%20precipitation%20have%20%3E75th%20percentile%20integrated%20water%20vapor%20transport%20%28IVT%29%2C%20demonstrating%20the%20strong%20relationship%20between%20IVT%20and%20extreme%20precipitation.%20This%20study%20also%20highlights%20the%20relationship%20between%20IVT%20direction%20and%20complex%20coastal%20topography%20in%20determining%20precipitation%20extremes.%20For%20example%2C%20in%20Klukwan%20and%20Skagway%2C%2080%25%5Cu201390%25%20of%20extreme%20AR%20days%20have%20south%5Cu2010southwesterly%20or%20south%5Cu2010southeasterly%20IVT.%20Coastal%20communities%20like%20Yakutat%20experience%20higher%20IVT%20and%20precipitation%20overall%2C%20and%20although%20southeasterly%20IVT%20is%20more%20common%2C%20extreme%20precipitation%20events%20are%20most%20common%20with%20southwesterly%20IVT.%20Collaboration%20with%20the%20National%20Weather%20Service%20in%20Juneau%2C%20Alaska%20will%20lead%20to%20improved%20situational%20awareness%2C%20forecasts%2C%20and%20Impact%20Decision%20Support%20Services%20to%20communities%2C%20saving%20lives%20and%20property%20in%20a%20region%20vulnerable%20to%20the%20impacts%20of%20climate%20change.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Extreme%20precipitation%20events%20associated%20with%20atmospheric%20rivers%20%28ARs%29%20trigger%20floods%2C%20landslides%2C%20and%20avalanches%20that%20threaten%20lives%20and%20livelihoods%20in%20Southeast%20Alaska.%20ARs%2C%20long%20and%20narrow%20regions%20of%20intense%20water%20vapor%20transport%2C%20reach%20Southeast%20Alaska%208%5Cu201315%5Cu00a0days%20per%20month%2C%20yet%20only%20six%20ARs%20per%20year%20account%20for%20up%20to%2091%25%20of%20precipitation%20extremes.%20This%20study%20shows%20that%20ARs%20that%20result%20in%20extreme%20precipitation%20in%20six%20rural%20and%20indigenous%20communities%20%28Hoonah%2C%20Klukwan%2C%20Skagway%2C%20Yakutat%2C%20Craig%2C%20and%20Kasaan%29%20are%20more%20likely%20to%20have%20stronger%20moisture%20transport%2C%20and%20that%20the%20direction%20of%20the%20moisture%20transport%20plays%20a%20role%20in%20precipitation%20outcomes%20in%20each%20community.%20Coastal%20communities%20like%20Yakutat%20experience%20higher%20moisture%20transport%20and%20precipitation%20overall%2C%20and%20although%20moisture%20transport%20from%20the%20southeast%20is%20more%20common%2C%20extreme%20precipitation%20events%20are%20more%20common%20when%20moisture%20transport%20comes%20from%20the%20southwest.%20Communities%20located%20further%20inland%2C%20such%20as%20Klukwan%20and%20Skagway%2C%20have%20lower%20moisture%20transport%2C%20but%20similar%20precipitation%20outcomes%2C%20and%2080%25%5Cu201390%25%20of%20extreme%20AR%20days%20have%20south%5Cu2010southwesterly%20or%20south%5Cu2010southeasterly%20moisture%20transport.%20The%20results%20illustrate%20the%20opportunity%20to%20incorporate%20additional%20characteristics%20of%20Southeast%20Alaskan%20ARs%20to%20improve%20situational%20awareness%2C%20forecasts%2C%20and%20messaging%20from%20the%20National%20Weather%20Service%20Office%20in%20Juneau%2C%20Alaska%20for%20the%20vulnerable%20communities%20that%20they%20serve.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20occur%20on%20%5Cu223c120%5Cu00a0days%20per%20year%20in%20Southeast%20Alaska%2C%20but%20%5Cu223c6%5Cu00a0days%20produce%2068%25%5Cu201391%25%20of%20precipitation%20days%20%3E95th%20percentile%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20six%20rural%20and%20indigenous%20Southeast%20AK%20communities%2C%2080%25%5Cu201396%25%20of%20days%20with%20extreme%20precipitation%20have%20%3E75th%20percentile%20moisture%20transport%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Extreme%20precipitation%20in%20Southeast%20Alaska%20is%20more%20likely%20during%20atmospheric%20rivers%20with%20south%5Cu2010southwesterly%20moisture%20transport%22%2C%22date%22%3A%222024-02-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023JD039294%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023JD039294%22%2C%22collections%22%3A%5B%223CUFBFPZ%22%5D%2C%22dateModified%22%3A%222024-11-12T21%3A34%3A06Z%22%7D%7D%2C%7B%22key%22%3A%22JPXX9JYP%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nash%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ENash%2C%20D.%3C%5C%2Fstrong%3E%2C%20Carvalho%2C%20L.%20M.%20V.%2C%20Rutz%2C%20J.%20J.%2C%20%26amp%3B%20Jones%2C%20C.%20%282024%29.%20Influence%20of%20the%20freezing%20level%20on%20atmospheric%20rivers%20in%20High%20Mountain%20Asia%3A%20WRF%20case%20studies%20of%20orographic%20precipitation%20extremes.%20%3Ci%3EClimate%20Dynamics%3C%5C%2Fi%3E%2C%20%3Ci%3E62%3C%5C%2Fi%3E%281%29%2C%20589%26%23x2013%3B607.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs00382-023-06929-x%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs00382-023-06929-x%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Influence%20of%20the%20freezing%20level%20on%20atmospheric%20rivers%20in%20High%20Mountain%20Asia%3A%20WRF%20case%20studies%20of%20orographic%20precipitation%20extremes%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deanna%22%2C%22lastName%22%3A%22Nash%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Leila%20M.%20V.%22%2C%22lastName%22%3A%22Carvalho%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%20J.%22%2C%22lastName%22%3A%22Rutz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%22%2C%22lastName%22%3A%22Jones%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%20reach%20High%20Mountain%20Asia%20%28HMA%29%20about%2010%20days%20per%20month%20during%20the%20winter%20and%20spring%2C%20resulting%20in%20about%2020%5Cu00a0mm%20day%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24%24%5E%7B-1%7D%24%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20-%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20of%20precipitation.%20However%2C%20a%20few%20events%20may%20exceed%20100%5Cu00a0mm%20day%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24%24%5E%7B-1%7D%24%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20-%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20providing%20most%20of%20the%20total%20winter%20precipitation%20and%20increasing%20the%20risk%20of%20precipitation-triggered%20landslides%20and%20flooding%2C%20particularly%20when%20the%20height%20of%20the%20height%20of%20the%200%5Cu00a0%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24%24%5E%7B%5C%5Ccirc%20%7D%24%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2218%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20C%20isotherm%2C%20or%20freezing%20level%20is%20above-average.%20This%20study%20shows%20that%20from%201979%20to%202015%2C%20integrated%20water%20vapor%20transport%20%28IVT%29%20during%20ARs%20that%20reach%20Western%20HMA%20has%20increased%2016%25%20while%20the%20freezing%20level%20has%20increased%20up%20to%2035%5Cu00a0m.%20HMA%20ARs%20that%20have%20an%20above-average%20freezing%20level%20result%20in%2010%5Cu201340%25%20less%20frozen%20precipitation%20compared%20to%20ARs%20with%20a%20below-average%20freezing%20level.%20To%20evaluate%20the%20importance%20of%20these%20trends%20in%20the%20characteristics%20of%20ARs%2C%20we%20investigate%20mesoscale%20processes%20leading%20to%20orographic%20precipitation%20using%20Advanced%20Weather%20Research%20and%20Forecasting%20%28ARW-WRF%29%20simulations%20at%206.7%20km%20spatial%20resolution.%20We%20contrast%20two%20above-%20and%20below-%20average%20freezing%20level%20AR%20events%20with%20otherwise%20broadly%20similar%20characteristics%20and%20show%20that%20with%20a%2050%5Cu2013600%5Cu00a0m%20increase%20in%20freezing%20level%2C%20the%20above-average%20AR%20resulted%20in%2010%5Cu201370%25%20less%20frozen%20precipitation%20than%20the%20below-average%20event.%20This%20study%20contributes%20to%20a%20better%20understanding%20of%20climate%20change-related%20impacts%20within%20HMA%5Cu2019s%20hydrological%20cycle%20and%20the%20associated%20hazards%20to%20vulnerable%20communities%20living%20in%20the%20region.%22%2C%22date%22%3A%2201%5C%2F2024%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs00382-023-06929-x%22%2C%22ISSN%22%3A%220930-7575%2C%201432-0894%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.springer.com%5C%2F10.1007%5C%2Fs00382-023-06929-x%22%2C%22collections%22%3A%5B%223CUFBFPZ%22%5D%2C%22dateModified%22%3A%222024-11-12T21%3A34%3A26Z%22%7D%7D%2C%7B%22key%22%3A%22C96FXV5P%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nash%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ENash%2C%20D.%3C%5C%2Fstrong%3E%2C%20Carvalho%2C%20L.%20M.%20V.%2C%20Jones%2C%20C.%2C%20%26amp%3B%20Ding%2C%20Q.%20%282022%29.%20Winter%20and%20spring%20atmospheric%20rivers%20in%20High%20Mountain%20Asia%3A%20climatology%2C%20dynamics%2C%20and%20variability.%20%3Ci%3EClimate%20Dynamics%3C%5C%2Fi%3E%2C%20%3Ci%3E58%3C%5C%2Fi%3E%289%26%23x2013%3B10%29%2C%202309%26%23x2013%3B2331.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs00382-021-06008-z%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs00382-021-06008-z%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Winter%20and%20spring%20atmospheric%20rivers%20in%20High%20Mountain%20Asia%3A%20climatology%2C%20dynamics%2C%20and%20variability%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deanna%22%2C%22lastName%22%3A%22Nash%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Leila%20M.%20V.%22%2C%22lastName%22%3A%22Carvalho%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%22%2C%22lastName%22%3A%22Jones%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qinghua%22%2C%22lastName%22%3A%22Ding%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%20that%20reach%20the%20complex%20terrain%20of%20High%20Mountain%20Asia%20%28HMA%29%20cause%20significant%20hydrological%20impacts%20for%20millions%20of%20people.%20While%20ARs%20are%20often%20associated%20with%20precipitation%20extremes%20and%20can%20cause%20floods%20and%20debris%20flows%20affecting%20populated%20communities%2C%20little%20is%20known%20about%20ARs%20that%20reach%20as%20far%20inland%20as%20HMA.%20This%20paper%20characterizes%20AR%20types%20and%20investigates%20dynamical%20mechanisms%20associated%20with%20the%20development%20of%20ARs%20that%20typically%20affect%20HMA.%20Combined%20empirical%20orthogonal%20function%20%28cEOF%29%20analysis%20using%20integrated%20water%20vapor%20transport%20%28IVT%29%20is%20applied%20to%20days%20where%20an%20AR%20reaches%20HMA.%20K-means%20cluster%20analysis%20applied%20to%20the%20first%20two%20principal%20components%20uncovered%20three%20subtypes%20of%20AR%20events%20with%20distinct%20synoptic%20characteristics%20during%20winter%20and%20spring%20months.%20The%20first%20subtype%20increases%20precipitation%20and%20IVT%20in%20Western%20HMA%20and%20is%20associated%20with%20a%20zonally%20oriented%20wave%20train%20propagating%20within%20the%20westerly%20jet%20waveguide.%20The%20second%20subtype%20is%20associated%20with%20enhanced%20southwesterly%20IVT%2C%20anomalous%20upper-level%20cyclonic%20circulation%20centered%20on%2045%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24%24%5E%5C%5Ccirc%20%24%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2218%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%2C%20and%20precipitation%20in%20Northwestern%20HMA.%20The%20third%20subtype%20shows%20anomalous%20precipitation%20in%20Eastern%20HMA%20and%20southwesterly%20IVT%20across%20the%20Bay%20of%20Bengal.%20Interannual%20variations%20in%20the%20frequency%20of%20HMA%20ARs%20and%20relationships%20with%20various%20teleconnection%20patterns%20show%20that%20western%20HMA%20AR%20subtypes%20are%20sensitive%20to%20well-known%20remote%20large-scale%20climate%20factors%2C%20such%20as%20the%20El%20Ni%5Cu00f1o%20Southern%20Oscillation%2C%20Arctic%20Oscillation%2C%20and%20the%20Siberian%20High.%20These%20results%20provide%20synoptic%20characterization%20of%20the%20three%20types%20of%20ARs%20that%20reach%20HMA%20and%20reveal%20the%20previously%20unexplored%20significance%20of%20their%20contribution%20to%20winter%20and%20spring%20precipitation.%22%2C%22date%22%3A%2205%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs00382-021-06008-z%22%2C%22ISSN%22%3A%220930-7575%2C%201432-0894%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.springer.com%5C%2F10.1007%5C%2Fs00382-021-06008-z%22%2C%22collections%22%3A%5B%223CUFBFPZ%22%5D%2C%22dateModified%22%3A%222024-11-12T21%3A35%3A06Z%22%7D%7D%2C%7B%22key%22%3A%22CUJ5U8QH%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Murray%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMurray%2C%20A.%20T.%2C%20Carvalho%2C%20L.%2C%20Church%2C%20R.%20L.%2C%20Jones%2C%20C.%2C%20Roberts%2C%20D.%2C%20Xu%2C%20J.%2C%20Zigner%2C%20K.%2C%20%26amp%3B%20%3Cstrong%3ENash%2C%20D.%3C%5C%2Fstrong%3E%20%282021%29.%20Coastal%20Vulnerability%20under%20Extreme%20Weather.%20%3Ci%3EApplied%20Spatial%20Analysis%20and%20Policy%3C%5C%2Fi%3E%2C%20%3Ci%3E14%3C%5C%2Fi%3E%283%29%2C%20497%26%23x2013%3B523.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs12061-020-09357-0%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs12061-020-09357-0%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Coastal%20Vulnerability%20under%20Extreme%20Weather%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alan%20T.%22%2C%22lastName%22%3A%22Murray%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Leila%22%2C%22lastName%22%3A%22Carvalho%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Richard%20L.%22%2C%22lastName%22%3A%22Church%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%22%2C%22lastName%22%3A%22Jones%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dar%22%2C%22lastName%22%3A%22Roberts%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katelyn%22%2C%22lastName%22%3A%22Zigner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deanna%22%2C%22lastName%22%3A%22Nash%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2209%5C%2F2021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs12061-020-09357-0%22%2C%22ISSN%22%3A%221874-463X%2C%201874-4621%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.springer.com%5C%2F10.1007%5C%2Fs12061-020-09357-0%22%2C%22collections%22%3A%5B%223CUFBFPZ%22%5D%2C%22dateModified%22%3A%222024-11-12T21%3A34%3A44Z%22%7D%7D%2C%7B%22key%22%3A%22ULD7FM4X%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nash%20and%20Carvalho%22%2C%22parsedDate%22%3A%222020-07-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ENash%2C%20D.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Carvalho%2C%20L.%20M.%20V.%20%282020%29.%20Brief%20Communication%3A%20An%20electrifying%20atmospheric%20river%20%26%23x2013%3B%20understanding%20the%20thunderstorm%20event%20in%20Santa%20Barbara%20County%20during%20March%202019.%20%3Ci%3ENatural%20Hazards%20and%20Earth%20System%20Sciences%3C%5C%2Fi%3E%2C%20%3Ci%3E20%3C%5C%2Fi%3E%287%29%2C%201931%26%23x2013%3B1940.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Fnhess-20-1931-2020%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Fnhess-20-1931-2020%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Brief%20Communication%3A%20An%20electrifying%20atmospheric%20river%20%5Cu2013%20understanding%20the%20thunderstorm%20event%20in%20Santa%20Barbara%20County%20during%20March%202019%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deanna%22%2C%22lastName%22%3A%22Nash%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Leila%20M.%20V.%22%2C%22lastName%22%3A%22Carvalho%22%7D%5D%2C%22abstractNote%22%3A%22Abstract.%20On%205%5Cu00a0March%202019%2012%3A00%5Cu2009UTC%2C%20an%20atmospheric%20river%20%28AR%29%20made%20landfall%20in%20Santa%20Barbara%2C%20CA%2C%20and%20lasted%5Cnapproximately%2030%5Cu2009h.%20While%20ARs%20are%20typical%20winter%20storms%20in%20the%20area%2C%20the%20extraordinary%5Cnnumber%20of%20lightning%20strikes%20observed%20near%20coastal%20Santa%20Barbara%20made%20this%20event%20unique.%20The%20Earth%5CnNetworks%20Global%20Lightning%20Network%20%28ENGLN%29%20detected%208811%20lightning%20flashes%20around%20southern%5CnCalifornia%20%2830%20to%2037%5Cu2218%5Cu2009N%20and%20130%20to%20115%5Cu2218%5Cu2009W%29%20in%2024%5Cu2009h%2C%20which%20is%20roughly%5Cn2500%20times%20the%20climatological%20flash%20rate%20in%20this%20region.%20The%20AR-related%20thunderstorm%20resulted%20in%5Cnapproximately%2023.18%5Cu2009mm%20accumulated%20precipitation%20in%2030%5Cu2009h%20in%20Santa%20Barbara.%20This%5Cnarticle%20examines%20synoptic%20and%20mesoscale%20features%20conducive%20to%20this%20electrifying%20AR%20event%2C%5Cncharacterizing%20its%20uniqueness%20in%20the%20context%20of%20previous%20March%20events%20that%20made%20landfall%20in%20the%5Cnregion.%20We%20show%20that%20this%20AR%20was%20characterized%20by%20an%20unusual%20deep%20moist%20layer%20extending%20from%5Cnthe%20low%20to%20mid-troposphere%20in%20an%20environment%20with%20potential%20instability%20and%20low-elevation%20freezing%5Cnlevel.%20Despite%20the%20negligible%20convective%20available%20potential%20energy%20%28CAPE%29%20during%20the%20peak%20of%20the%5Cnthunderstorm%20near%20Santa%20Barbara%2C%20the%20lifting%20of%20layers%20with%20high%20water%20vapor%20content%20in%20the%20AR%20via%5Cnwarm%20conveyor%20belt%20and%20orographic%20forcing%20in%20a%20convectively%20unstable%20atmosphere%20resulted%20in%20the%5Cnformation%20of%20hail%20and%20enhanced%20electrification.%22%2C%22date%22%3A%222020-07-06%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.5194%5C%2Fnhess-20-1931-2020%22%2C%22ISSN%22%3A%221684-9981%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fnhess.copernicus.org%5C%2Farticles%5C%2F20%5C%2F1931%5C%2F2020%5C%2F%22%2C%22collections%22%3A%5B%223CUFBFPZ%22%5D%2C%22dateModified%22%3A%222024-11-12T21%3A35%3A17Z%22%7D%7D%2C%7B%22key%22%3A%22NWAFMV7E%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nash%20et%20al.%22%2C%22parsedDate%22%3A%222018-07-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ENash%2C%20D.%3C%5C%2Fstrong%3E%2C%20Waliser%2C%20D.%2C%20Guan%2C%20B.%2C%20Ye%2C%20H.%2C%20%26amp%3B%20Ralph%2C%20F.%20M.%20%282018%29.%20The%20Role%20of%20Atmospheric%20Rivers%20in%20Extratropical%20and%20Polar%20Hydroclimate.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E123%3C%5C%2Fi%3E%2813%29%2C%206804%26%23x2013%3B6821.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2017JD028130%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2017JD028130%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20Role%20of%20Atmospheric%20Rivers%20in%20Extratropical%20and%20Polar%20Hydroclimate%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deanna%22%2C%22lastName%22%3A%22Nash%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Duane%22%2C%22lastName%22%3A%22Waliser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bin%22%2C%22lastName%22%3A%22Guan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hengchun%22%2C%22lastName%22%3A%22Ye%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%20are%20narrow%2C%20long%2C%20transient%2C%20water%20vapor%5Cu2010rich%20corridors%20of%20the%20atmosphere%20that%20are%20responsible%20for%20over%2090%25%20of%20the%20poleward%20water%20vapor%20transport%20in%20and%20across%20midlatitudes.%20However%2C%20the%20role%20of%20ARs%20in%20modulating%20extratropical%20and%20polar%20hydroclimate%20features%20%28e.g.%2C%20water%20vapor%20content%20and%20precipitation%29%20has%20not%20been%20fully%20studied%2C%20even%20though%20moistening%20of%20the%20polar%20atmosphere%20is%20both%20a%20key%20result%20and%20amplifier%20of%20Arctic%20warming%20and%20sea%20ice%20melt%2C%20and%20precipitation%20is%20key%20to%20the%20surface%20mass%20balance%20of%20polar%20sea%20ice%20and%20ice%20sheets.%20This%20study%20uses%20the%20Modern%5Cu2010Era%20Retrospective%20analysis%20for%20Research%20and%20Applications%2C%20Version%202%20reanalysis%20to%20characterize%20the%20roles%20of%20AR%20water%20vapor%20transport%20on%20the%20column%5Cu2010integrated%20atmospheric%20water%20vapor%20budget%20in%20the%20extratropical%20and%20polar%20regions%20of%20both%20hemispheres.%20Meridional%20water%20vapor%20transport%20by%20ARs%20across%20a%20given%20latitude%20%28examined%20for%2040%5Cu00b0%2C%2050%5Cu00b0%2C%2060%5Cu00b0%2C%20and%2070%5Cu00b0%29%20is%20strongly%20related%20to%20variations%20in%20area%5Cu2010averaged%20%28i.e.%2C%20over%20the%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20cap%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20poleward%20of%20the%20given%20latitude%29%20total%20water%20vapor%20storage%20and%20precipitation%20poleward%20of%20that%20latitude.%20For%20the%20climatological%20annual%20cycle%2C%20both%20AR%20transport%20%28i.e.%2C%20nonlocal%20sources%29%20and%20total%20evaporation%20%28i.e.%2C%20local%20sources%29%20are%20most%20correlated%20with%20total%20precipitation%2C%20although%20with%20slightly%20different%20phases.%20However%2C%20for%20monthly%20anomalies%2C%20the%20water%20budget%20at%20higher%20latitudes%20is%20largely%20dominated%20by%20the%20relationship%20between%20AR%20transport%20and%20precipitation.%20For%20pentad%20and%20daily%20anomalies%2C%20AR%20transport%20is%20related%20to%20both%20precipitation%20and%20water%20vapor%20storage%20variations.%20These%20results%20demonstrate%20the%20important%20role%20of%20episodic%2C%20extreme%20water%20vapor%20transports%20by%20ARs%20in%20modulating%20extratropical%20and%20polar%20hydroclimate.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20term%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20atmospheric%20river%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28AR%29%20was%20coined%20by%20scientists%20Zhu%20and%20Newell%20in%20the%20early%201990s%20with%20the%20main%20result%20highlighting%20the%20importance%20of%20relatively%20infrequent%2C%20long%20conduits%20of%20strong%20moisture%20transport%20being%20responsible%20for%20most%20of%20the%20poleward%20transport%20of%20moisture%20across%20the%20midlatitudes%20and%20into%20the%20polar%20regions.%20While%20it%20is%20generally%20understood%20that%20this%20moisture%20is%20critical%20to%20the%20water%20and%20energy%20budgets%20of%20high%20latitudes%2C%20there%20have%20been%20no%20studies%20that%20have%20ever%20quantified%20the%20relationship%20between%20AR%20poleward%20moisture%20transports%20and%20the%20hydroclimate%20features%20of%20high%20latitudes.%20After%20a%20long%20hiatus%20in%20the%20consideration%20of%20the%20role%20of%20ARs%20on%20global%20climate%20since%20those%20of%20Zhu%20and%20Newell%2C%20this%20study%20quantifies%20the%20connections%20between%20water%20vapor%20transport%20by%20ARs%20across%20specific%20latitudes%20%28e.g.%2C%2040%5Cu00b0%29%20and%20the%20hydroclimate%20poleward%20of%20this%20latitude.%20The%20findings%20show%20there%20are%20strong%2C%20time%20scale%5Cu2010dependent%20%28e.g.%2C%20daily%20and%20monthly%29%20connections%20between%20ARs%20and%20high%5Cu2010latitude%20hydroclimate%20features.%20For%20example%2C%20the%20findings%20show%20a%20strong%20relationship%20between%20AR%20water%20vapor%20transport%20at%20a%20given%20latitude%20and%20the%20area%5Cu2010averaged%20total%20precipitation%20of%20the%20region%20poleward.%20This%20and%20other%20results%20in%20this%20study%20indicate%20the%20importance%20of%20ARs%20in%20shaping%20our%20global%20weather%20and%20climate.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Few%20studies%20since%20the%20data%5Cu2010limited%20Zhu%20and%20Newell%20%281994%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F94GL01710%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3B%201998%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2F1520%5Cu20100493%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20studies%20have%20quantified%20the%20links%20between%20ARs%20and%20global%20climate%20features%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Using%20MERRA2%2C%20this%20study%20shows%20strong%2C%20time%20scale%20sensitive%20links%20between%20AR%20water%20vapor%20transport%20and%20extratropical%5C%2Fpolar%20hydroclimate%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Evident%20is%20a%20strong%20relationship%20between%20AR%20water%20vapor%20transport%20across%20a%20latitude%20and%20area%5Cu2010mean%20extratropical%20precipitation%20variation%22%2C%22date%22%3A%222018-07-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2017JD028130%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2017JD028130%22%2C%22collections%22%3A%5B%223CUFBFPZ%22%5D%2C%22dateModified%22%3A%222024-11-12T21%3A35%3A32Z%22%7D%7D%2C%7B%22key%22%3A%22WASKKFGT%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nash%20et%20al.%22%2C%22parsedDate%22%3A%222017-09-07%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ENash%2C%20D.%3C%5C%2Fstrong%3E%2C%20Ye%2C%20H.%2C%20%26amp%3B%20Fetzer%2C%20E.%20%282017%29.%20Spatial%20and%20Temporal%20Variability%20in%20Winter%20Precipitation%20across%20the%20Western%20United%20States%20during%20the%20Satellite%20Era.%20%3Ci%3ERemote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E9%3C%5C%2Fi%3E%289%29%2C%20928.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Frs9090928%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Frs9090928%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spatial%20and%20Temporal%20Variability%20in%20Winter%20Precipitation%20across%20the%20Western%20United%20States%20during%20the%20Satellite%20Era%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deanna%22%2C%22lastName%22%3A%22Nash%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hengchun%22%2C%22lastName%22%3A%22Ye%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eric%22%2C%22lastName%22%3A%22Fetzer%22%7D%5D%2C%22abstractNote%22%3A%22The%20western%20United%20States%20is%20known%20for%20its%20water%20shortages%20due%20to%20large%20seasonal%20and%20inter-annual%20variability%20of%20precipitation%20as%20well%20as%20increasing%20demand.%20Climate%20change%20will%20impact%20the%20availability%20of%20water%20in%20the%20western%20United%20States%20through%20the%20modification%20of%20precipitation%20characteristics.%20Satellite%20data%20presents%20the%20opportunity%20to%20study%20these%20changes%20at%20a%20fine%2C%20continuous%20spatial%20resolution%5Cu2014particularly%20in%20places%20where%20no%20traditional%20ground%20observations%20exist.%20Utilizing%20the%20Tropical%20Rainfall%20Measuring%20Mission%20%28TRMM%29%203B42%20version%207%20precipitation%20data%2C%20this%20study%20examines%20the%20spatio-temporal%20changes%20in%20precipitation%20characteristics%20over%20the%20western%20United%20States%20between%201998%20and%202015%2C%20and%20their%20connections%20with%20the%20atmospheric%20total%20column%20water%20vapor%20and%20the%20El%20Ni%5Cu00f1o%20Southern%20Oscillation%20during%20the%20winter%20season.%20The%20results%20show%20that%20precipitation%20frequency%20in%20the%20western%20United%20States%20has%20been%20decreasing%20in%20general%2C%20precipitation%20totals%20and%20mean%20daily%20intensity%20are%20increasing%20in%20northwestern%20United%20States%2C%20but%20decreasing%20in%20the%20southwest%20United%20States%20during%20the%2018%20years%20of%20the%20study%20time%20period.%20Additionally%2C%20results%20show%20a%20strong%20relationship%20between%20total%20column%20water%20vapor%20and%20the%20precipitation%20characteristics%2C%20specifically%20in%20the%20southwestern%20United%20States.%22%2C%22date%22%3A%222017-09-07%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Frs9090928%22%2C%22ISSN%22%3A%222072-4292%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F2072-4292%5C%2F9%5C%2F9%5C%2F928%22%2C%22collections%22%3A%5B%223CUFBFPZ%22%5D%2C%22dateModified%22%3A%222024-11-12T21%3A35%3A44Z%22%7D%7D%5D%7D
Wang, Z., Ding, Q., Wu, R., Ballinger, T. J., Guan, B., Bozkurt, D., Nash, D., Baxter, I., Topál, D., Li, Z., Huang, G., Chen, W., Chen, S., Cao, X., & Chen, Z. (2024). Role of atmospheric rivers in shaping long term Arctic moisture variability. Nature Communications, 15(1), 5505. https://doi.org/10.1038/s41467-024-49857-y
Nash, D., Rutz, J. J., & Jacobs, A. (2024). Atmospheric Rivers in Southeast Alaska: Meteorological Conditions Associated With Extreme Precipitation. Journal of Geophysical Research: Atmospheres, 129(4), e2023JD039294. https://doi.org/10.1029/2023JD039294
Nash, D., Carvalho, L. M. V., Rutz, J. J., & Jones, C. (2024). Influence of the freezing level on atmospheric rivers in High Mountain Asia: WRF case studies of orographic precipitation extremes. Climate Dynamics, 62(1), 589–607. https://doi.org/10.1007/s00382-023-06929-x
Nash, D., Carvalho, L. M. V., Jones, C., & Ding, Q. (2022). Winter and spring atmospheric rivers in High Mountain Asia: climatology, dynamics, and variability. Climate Dynamics, 58(9–10), 2309–2331. https://doi.org/10.1007/s00382-021-06008-z
Murray, A. T., Carvalho, L., Church, R. L., Jones, C., Roberts, D., Xu, J., Zigner, K., & Nash, D. (2021). Coastal Vulnerability under Extreme Weather. Applied Spatial Analysis and Policy, 14(3), 497–523. https://doi.org/10.1007/s12061-020-09357-0
Nash, D., & Carvalho, L. M. V. (2020). Brief Communication: An electrifying atmospheric river – understanding the thunderstorm event in Santa Barbara County during March 2019. Natural Hazards and Earth System Sciences, 20(7), 1931–1940. https://doi.org/10.5194/nhess-20-1931-2020
Nash, D., Waliser, D., Guan, B., Ye, H., & Ralph, F. M. (2018). The Role of Atmospheric Rivers in Extratropical and Polar Hydroclimate. Journal of Geophysical Research: Atmospheres, 123(13), 6804–6821. https://doi.org/10.1029/2017JD028130
Nash, D., Ye, H., & Fetzer, E. (2017). Spatial and Temporal Variability in Winter Precipitation across the Western United States during the Satellite Era. Remote Sensing, 9(9), 928. https://doi.org/10.3390/rs9090928